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flows in economic markets. In some instances the partitioning rule is

*implicit: if N is a point process in which each point has one of several

attributes, then the numbers of points with these attributes form a

"' partition of N.

In this paper, we present multivariate Poisson and compound Poisson

limit theorems for several partitions. These are weak convergence

results for point processes in the setting described in Kallenberg

(1975). We also give bounds on the total- variation distance between the

ipartitions and their limits. Related Poisson approximations were

developed by Hodges and Le Cam (1960), Le Cam (1960), Freedman (1974),

Serfling (1975), Brown (1983) and Serfozo (1985). In particular, we

' discuss partitions with point assignments that are independent (Section

. "2), Markovian (Section 3) and syncronous (Section 4). Some of the

if partitions (Section 4) converge to multivariate infinitely divisible

processes with independent increments. We conclude by showing (Section

!Lhat the asymptotic behavior of a partition, under mild conditions, is

not affected by time delays in the assignments. This is why time delays

do not appear in the previous results.

2. Partitions With Independent Point Assignments
&

In this section, we study the asymptotic behavior of the following

partition. Let N - {N(t); t ; 0) be a point process on R with points at

the times T 1  T2  ... Suppose N is partitioned by the rule that if a

point of N appears at time t, then it is assigned instantaneously to

-. subprocess j with probability p (t), independently of everything else,

" where 1 l(t)- 1, t > 0. Let Xk denote the subprocess number to which

4 the point at T is assigned. Under our assignment rule,
k

P(Xk - JITk t; XX, TI, X * k) - pj(t), for each J, k, t.

*: * .. **. * .t * .::ej b :~. * ... . ' . t **.. -'-* .**.*....>**..*
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* - .t 1t
The resulting partition (NI, N2,...) is given by

N (t) = I I(X = j)I(Tk • t), t 0,
k=l

* . where I(A) is the indicator random variable of the event A.

We will consider the behavior of the partition as p (t) tends to

zero. To this and, we assume that p (t) depends on n and denote it by

p (t). We consider the normalized partitioninj
N (t):= (N (t), Nn(t),•••):= (N1 (ant), N2(at),...), t > 0,

n nl n21n 2n

* which is the original partition with the time scale changed so that the

constant a is the new time unit. We assume a + o. Here is a Poisson
F n n

limit theorem for N
-n

* Theorem 2.1. Suppose N(t)/t + A, a positive constant, and, for each j,

there is a measurable function r R+ + R+ such that

lim anPnj (ant) = r (t), uniformly on finite intervals.
n 

n n

Then N + N, where N - (NIN ...) is a vector of independent Poisson
'-n P

processes with respective intensities Arl,Ar 2,...

Comments 2.2. Although Nn,Nn,... are generally dependent, their limits
nl n2'

NIN 2 o.. are independent. We have assumed, for simplicity, that the

original process N does not depend on n. Theorem 2.1 also applies,

(n)however, when N is a function N of n such that

N Nn(tn)/tn + X as n + -, for each tn +

T(n)/ D -l
or, equivalently, that T /kn + x for each k + -"

kon nn

-Proof To prove N + N, it suffices to show that the Laplace functional

of N converges to that of N. That is, for each J >1 and continuous
_ * -- n
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where the supremum is over all measurable sets. When X and Y are

discrete with densities f and g, respectively, then this becomes

d(X,Y) = (1/2) Ilf(x) - g(x)I.
x

" Corollary 2.3. Suppose p(t) - independent of t, and N has
nj nj'

stationary increments with finite X:= EN(l) and a2 :- Var N(l). Let

qn = j=iP' ,and N = (Nn N ). If Z = (Zn...Znj) is a vector

of independent Poisson random variables with EZnj , tXap then

- J 2
d(N n(t) Z ) tXa nq t ), 0.

If Z = ( ...,z ) is a vector of independent Poisson random variables

with EZ. = t)ac, then
r"

J 2 + n~-n+taq t>O

d(N (t), Z) ( tanqn + + txja q - al, t 0.

Proof. This is a special case of Corollary 4.3 below with p A qn'

3 d(M kM) = 0, ENn(t) - xant, and

N (t)
n

...""El . nk - t~Ad - ElqnN(ant) - t~Ad

( qn/VarN(a t) + tXtanq - ].

3. Partitions With Markovian Point Assignments

Let N - {N(t); t 01 be a point process on R Ith points at

T1 4 T2 4 ... Suppose that N is partitioned by the rule that its point

at Tk is assigned instantaneously to subprocess number Xk . The resulting

t t
partition is (N1, N2 ,...) is given by

N (t) = I(X - J)I(T t t 0, j - 1,2,...
--: k-l

We assume that the assignment process X0 ,XI,X2 ,... is a stationary Markov

l .. . 2
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chain with state space {1,2,...), transition probabilities p-',, and

distribution wi - P(X i). In this section, we study the asymptotic

behavior of this partition as the wi's tend to zero.

Assume that the partition depends on n and consider the finite

segment

N (t):- (Nn (t),...,Nnj(t)): (Nt (ant) ,N(ant)

:t [iJ i a n )- P and J < - fixed. The form of

and the need for finite J emanates from our analysis.

We will assume that p depends on n such that

(3.1) sup Pij + 0 as n + - for each j - 1,...,J.
i

F

This implies that w 0 as n + -for each j - 1,...,J, and hence a n

Another consequence is that

3

- qi:m Pij - Pii * 0 as n +
j=

This q is the probability that the point assignment changes from

subprocess i to any other subprocess j * i in (1,...,J}. Keep in mind

!M that Pij' W and qi depend on n, but we are not appending an n to them.

Next, we assume that there are probabilities rl,...,r J summing to

one such that

(3.2) sup (pij - qlr )I(q > 0) + 0 for each j 1,...,J,
i

and that

(3.3) sup 1i(l - r1 )I(qi = 0)/ 1 k 0 as n + m.

i k
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We also assume, for simplicity, that N has stationary increments with

2
finite X:- EN(i) and a2:= VarN(l); that pjrJaX,a are independent of n;

a and that 0 4 pjj < 1, r > 0, i > 0 for each i and j = l,...,J. Let

6. n 1/[w 1 pjIqi>0/ n 1-ri)~ 0]
i ji

j *i

And let N(t):= (Nl(t),...,Nj(t)) be a vector of independent compound

Poisson processes such that the atoms of N appear at the rate Ar. and

their size has the geometric density gj(E):= pjj (1 - p ) 1. Note

that when pjj =i 0, then N is a Poisson process.

Theorem 3.1. If {Xk } is independent of N, then

(3.4) d(Nn(t), (t)) 4 jnl( - P + ta(6 + Iniq i)
J=l

+ [tan (a-X) + t Xa w2] 1/2 t O.--.- l
ni

If (3.1) - (3.3) hold, then the right-hand side of (3.4) converges to

Czero as n + . If N(t)/t D X as t + - and, for each J, (3.1) - (3.3)

hold and

(3.5) lim P(X = j = i)/r 1, for each m > 1, j = ,...,J,
[ ma nJ 0

D
then N + N.

Comments Assumptions (3.1) - (3.3) are not used for the first assertion.

The inequality (3.4) implies that the subprocesses Nnl,...NnJ are

approximately independent Poisson or compound Poisson processes when the

right-hand side of (3.4) is near zero. Note that the independence of

{Xk) and N is invoked for (3.4) but not for the other assertions; this

independence can be relaxed as in Theorem 4.4. Theorem 3.1 also applies

when N is dependent on n; the assumption N(t)/t + X would have to be

modified as in Comments 2.2.

, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 * .•o -. °.o . . • • a • . . . ° . • . -~ . . .. .
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Consider the last term in (3.6). Let g be the probability density

on (0,1,...} defined by

g(.uj) f r g (it), L= 1,2,...

where u is the J-dimensional unit vector with a one in the j-th

component and zeros elsewhere. Applying Theorem 1 (expression (1.5)) in

Serfozo (1985), we have

N(ant) N(a nt)

(3.7) d(Sn N(t)) 4 E I [p2 + d(fkg)] + El I Pk XtI
* k=l k=l

where

Pk: P(% * OIXo''"Xk-) " (Xk- = i)q

fk(W~: P(L ~ =2.IXO*~kl!.k 0
k ,7 jxo ... ,Xk-l, * o)

= ~ I(Xk 1 = i)(plj/qi)I(q i > O)gj(L), j =
-i;i*j

J

* d(f kg):= (1/2) 1 1 Ifk(i)- g(Yu)I.
j=l Z=i

To evaluate the right-hand side of (3.7), first note that

."l

Epk'= q a -
k n

2 = 21 2-. Ep k  E[j. I(X k_ 1 'f i)q fi [ iq,

i i

ii Ed(f k'g) = 6n

Since N has stationary increments and is independent of the stationary

°
.................... . . . . .
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Markov chain {Xk}, then

N(a nt)

(3.8) E[ 1 pk]  EN(a nt)Epl =t,
k-in

N(a nt)

(3.9) E[ (p 2 + d(fk,g))] = 2at[6+ 2

k-i i

and, by (3.8) and Schwarz's inequality we have

N(a nt) N(a t)

(3.10) El Pk AtJ I [Var In Pk]
* k-l k-l

[EN(a nt)VarpI + (Epl)
2 VarN(ant)]1/2

- [tan (a - X) + t~a V q 2 ] 1 / 2

I-n

Then using (3.9) and (3.10) in (3.7), combined with (3.6), yields the

desired inequality (3.4).

The second assertion of Theorem 3.1 is true since one can show that
U

(3.2) and (3.3) imply a 6 + 0, and that (3.1) implies
nn

a "n qi 1Tiqi/ iq +0.

To prove the third assertion, consider the multivariate process

[a nt]

YM(t) - I (I(Xk7l),''',I(Xk=J)), t 0 0,
k=1

where (r] denotes the integer part of r. Let N denote the process N

with A = 1. The first two assertions apply to Y with N(t) = [t], A = 1

and a= 0. Thus Y n(t) + N (t) for each t. Since [Xk} is stationary and

1Nhas stationary increments, then we have Y n t) -Y n(s) 1 1s
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In the preceding sections, the partitions converge to vectors of

independent processes. But here, the syncronous point assignments lead

to the convergence of N to vectors of dependent processes. These~n

limiting processes are as follows. Suppose N = (N 1,N2,...) is a

multivariate infinitely divisible point process with independent

increments and Laplace functional

3 J

Eexp{- f JR f.(t)N.(dt)} = exp{-f f11- exp(- Im.f.(t)]i(m x dt),
j=l + m j=1

where V is the canonical measure on {0,1,...} x R+ that satisfies
J+

(4.1) [i - exp(- m.)]1(m x [0,t]) < -, t > 0.
j=l 3

This is a multivariate analogoue of the point processes in Chapter 7 of

Kallenberg (1975), or in Kerstan, Matthes and Mecke (1978). When

* j(m x dt) = f(m)X(dt), then N is a compound Poisson process whose atom

locations in R are Poisson with intensity measure X and its vector-valued

atom sizes have the density f; we simply say that N is multivariate

compound Poisson(A,f). In case f is concentrated on [0,1 }1, then N is

multivariate Poisson with intensity X. In either case, the NI,N 2 ... are

independent when i(r x dt) = jl(m = mjuj)uj(mj x dt), where '2

are measures on (0,1,...} x R+

For the following results, we assume that the parent process N and

the partition depend on n, and we let T(n)denote T and (n):=
k k nd4C

(Mkl,Mk 2 ,.".).

Theorem 4.1. Suppose that

n)
(4.2) T k) /k * 1, for eachkn +

n
p"' an tht(n) (n)

and that M M.. are independent and satisfy

. . . . . . . . . . . . . . ' -
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(n)'..'(n)
(4.3) lim max P((M( U M ) 0) 0 for each Jm.

n+- k~ma
n

Then N converges in distribution to some N if and only if there is a
.- n

measure , as above, that satisfies (4.1) and is such that

-:[ant (n)

(4.4) lim p(Mn = A) (m x (s,t])
n+o k=[a s]n

for each s < t with U(m x {s}) = U(m x {t}) = 0. In this case, the

* multivariate process N is infinitely divisible with independent

increments and canonical measure U.

Proof. Define

- ( n) -(n)r (n)lk a)

Yn(t):= a I(T n a nt) ,  (k (t):= M- I(k ant)n n k k

Mn(t):= (Mnl(t) , Mn().): ( n) (t), t > O.

-nnl n2 (n)i• k

Then we can write N nj(t) M nj(y (t)), t 0 0. Assumption (4.2) implies
D

that Yn . y where y(t) = t, t > 0. Thus, by Lemma 3.2, the statement

N N is equivalent to Mn N. In addition, note that M = (i~n ~~n -n

(n) _(n)
where ,... are independent and satisfy, by (4.3),

max ME()('-' n 0 * 0)
k

= max P(( ,... * 0) + 0 as n + .
k~ta

n

Now, if (4.4) holds, then by a multivariate point process version of

DTheorem 7.2 of Kallenberg (1975), we know that M + N, where N is as; ~n

Vdescribed in the last assertion of Theorem 4.1. Thus N + N.-nDD
Conversely, suppose N + some N. Then M + N, and by a multivariate

-n -n - I
version of Theorem 6.1 of Kallenberg (1975), the limit N must be

infinitely divisible. Furthermore, N has independent increments

.
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a n additively null. And the right-hand side of (4.6) converges to zero

when there is a X~ > 0 such that

a t
n1

sup EIN n(t) - Xa n t < l, ur El I p nk x ) ctj =0,

* *n n-*w k=l

and Ed nk and p Aare a n-additively null.

N (t)(n
Proof. First note that we can write N Mt knl M n and that N Mt is

annanFn)_ stopping time. Thus, parts (a) and (b) follow from Theorem 1 of
k

b Serfozo (1985). To prove part (c), first note that for any real numbers

N t) (in+l )a
n -ln

T r~ 4 a- N (t) sup r
k-l n i k=man

Using this with the property Esup U = sup EUn and El ' pk-~k'~0 k
n n

one can see that the right-hand side of (4.5) is bounded by

-1 (m+l)a -
aENn (t) sup (E A + O k))

in k-ma

and this converges to zero under the hypotheses of (c). A similar

argument shows that the right-hand side of (4.6) converges to zero; here

* one uses

N (t) N (t) Xa t

kIl An c1 E k-l n k k-i k

Xa tn
+ Ef I Pnk - cti

k=l

(in+l )a
n

4EIN~t M xa tlsup P n + o~i).
mn k-ma

n
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Theorem 5.1. Suppose

(n)/
(5.1) T /k +1 for each k +k nn

n

and

-1su ma (n). (n) D
(5.2) F-= a~ ku 2.D x M~ + 0 as n~

D V
ThenN + N if and only if N + N.

Proof. First, suppose N n N. Clearly, for any j and s < t,

(n)

(5.3) Nnj (S,t = X J)I(ans < Tk(n) nt)'?lk X=-1

(n)
1 , (x) - J)I(ans < Tk + Dn) an(t + ))

k 1-.

= N (s,t + Cnis

xIJ n

- and, similarly,

(n)

(5.4) N (st > (nX) + D T <T + D a t)
("~~. (5.4 nn(St k k.Z )Ia(

n' k Z-1 n

= Nj (s + Cn t] when s + en < t.nj n ( n

D D
One can show that Nn  N implies that (Nnj (st + En, N nj(s + n t]) +

(Nj(s,t], N1 (s,t]) for any s < t with Nj{s} - Nj{t = 0 a.s. This and

(5.3), (5.4) imply Nnj(S~t] -*Nj(s,t]. This reasoning readily

*Dgeneralizes to yield N * N.

Conversely, suppose Nn + N. Note that we can write N nj(t) =
• % j( -1 (n) t n

M (Y(t)), where Yn(t):= a kIT at) and

(.n)

nj ( - I I kX- ( J)I(k anta 0, t 0 0, j- 1,2,..." •k-l X-I 1

.. . . ...

. .. . . . . .
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V
Since (5.1) implies that Y n y, where y(t) - t, it follows by Lemma 3.2

*D D
that N + N implies M + N. Now, similarly, to (5.3) and (5.4),

H (s't - C ] 4 N (s't] eH • s - C 't], s < t -
nj ni nj nj n n

D
Using this and M N in an argument analogous to the preceding one

yields N + N.

q-xi-

U:.

U°

t
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